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1. Overview and Project Goals 
 
Our research investigated the connections between scale space and the linear and 
nonlinear diffusion of images using a combination of analytic methods and prototype 
Matlab and Mathematica programs.  We investigated concepts of generalized entropy and 
quantum entropy and their measures, using mathematical analysis.  The generalized 
entropies included in particular Renyi entropy [renyi] with parameter q.  We also 
examined the properties of generalized entropy of images subject to linear and nonlinear 
diffusion processes.  We performed analysis of quantum and semi-classical entropies of 
model physical systems. 
 
We investigated the feasibility of applying forms of generalized quantum search to 
scheduling and logistics problems.  As part of this effort, we performed simulations of 
adaptive quantum search.  Based upon this portion of the research, Ben J. Jones received 
the Ryan Sayers memorial award for research as a senior student majoring in both 
computer science and engineering physics. 
 
As a further goal, we investigated the capabilities and constraints of quantum lattice gas 
algorithms (QLGAs), including the properties of their (unitary) collision operators.  
QLGAs are known to be able to simulate a variety of partial differential equations 
[yepez], including the Navier-Stokes, Boltzmann, and Dirac equations [iwoprd].  In our 
research, we investigated the feasibility of the solution of the celebrated Maxwell 
equations of electromagnetism by means of QLGAs [coffey].  We also formulated, 
implemented, and simulated a QLGA for the telegraph equation with one spatial 
dimension [cc2009].  The latter equation combines facets of both the wave and diffusion 
equations.  Our research indicated that the simulation of the 1D linear telegraph equation 
with an iterate constraint has application to signal denoising. 
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2. Approach 
 
Consideration of classical and quantum entropy and their application motivated much of 
our initial effort.  Furthermore, entropy concepts occurred throughout much of the later 
research.  Most explicitly they appear in the consideration of image entropy, but also later 
for instance in the Schmidt strength from quantum logic gate decomposition.  This form 
of entropy gives a measure of the nonlocal content of an entangling logic gate.  
 
Entropy and its generalizations are among the most important measures of information 
content and complexity of signals and images.  Another important concept that we made 
use of was that of scale spaces.  In scale-space theory one embeds an image into a 
continuous family of gradually smoother versions of it.  The time t acts as a parameter for 
this, with the original image corresponding to t = 0.  Increasing the scale should simplify 
the image without creating spurious structures.  For instance, in viewing a facial image at 
coarser scales, it would be undesirable to have artificial features appearing.  A scale-
space introduces a hierarchy of image features, and can provide an important process in 
going from a pixel-level description to a semantical image description. 
 
Partial differential equations (PDEs) are the suitable framework for scale-spaces, and the 
oldest, simplest, and probably most studied version of scale space corresponds to a linear 
diffusion process.  The fundamental solution (Greens function) for a linear heat or 
diffusion equation is a Gaussian function with standard deviation proportional to the 
square root of the time.  The solution of the linear diffusion equation can be given as the 
convolution of the initial data (image) with this Gaussian function, and this gives linear 
scale space.  For the extension to nonlinear scale space, the PDE involved is a nonlinear 
diffusion equation with a decreasing diffusion coefficient D.  When D depends upon the 
magnitude of the gradient of the pixel intensities, we generally obtain selective 
smoothing.  Locations where the gradient is large have strong probability of being an 
edge, and D is reduced. 
 
A form of the diffusion (or heat) equation is ∂I/∂t = ∇ ⋅ [D(I) ⋅ ∇I], where I is the image 
intensity.  For linear and isotropic diffusion in two dimensions, the diffusion equation is 
simply It = D(Ixx+Iyy).  The basic idea of anisotropic diffusion is to diffuse intensities 
along edges of objects that appear within an image, while not diffusing (or even 
enhancing the contrast) along directions that are perpendicular to edges [perona, price].  
For nonlinear diffusion of images to generate intraregion smoothing, D = D(|∇I|), and 
regions of high intensity contrast undergo less diffusion.   
 
The diffusion boundary value problem is completed with the specification of initial and 
boundary conditions.  The initial condition is simply I(x,y,t=0) = f(x,y), where f is the 
given image.  Homogeneous Neumann or periodic boundary conditions are appropriate as 
they lead to conservation of the average grey values of the whole image.  This fact results 
from the divergence form of the diffusion equation. 
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In the mathematical sense, the partial differential equations we simulated with QLGAs 
are evolution equations of the form 
 
 ut = f(u,ux,uxx), (1) 
 
where the subscripts denote partial differentiation, for example, ut ≡ ∂u/∂t.  Therefore, we 
solved equations that are first order in time and second order in space.  The PDE is 
supplemented by an initial condition u(x,t = 0) = u(x,0) and boundary conditions at the 
endpoints of the x-interval to completely specify the problem.  We used most often 
periodic boundary conditions, so that for a one-dimensional problem on an interval of 
length L, u(0,t) = u(L,t).  For image processing applications in particular, the dependent 
variable u corresponds to pixel intensities.  For heat transfer problems, u represents the 
temperature, while for fluid flow problems u corresponds to either the mass density or 
flow velocity. 
 
A quantum lattice gas algorithm is a quantum version of a classical lattice gas, which in 
turn is an extension of classical cellular automata [yepez, doolen].  In place of the binary 
lattice variables of a classical lattice gas, the quantum version has a local Hilbert space 
describing the quantum bit (qubits).  In the classical case, in order to recover the proper 
macroscopic dynamics (and thermodynamics), it is important to ensure that the 
microscopic dynamics preserves conservation laws.  Similarly, in the quantum case, the 
number densities of qubits must be preserved so that the interaction operator, called the 
collision operator, must be unitary. 
 
The operation of a type-II quantum processor includes the sequential repetition of four 
main steps [berman, yepez, vahala, love].  First, initialization creates the quantum-
mechanical initial state that corresponds to the initial probability distribution for a partial 
differential equation to be solved.  Secondly, a unitary transformation (collision operator) 
is applied in parallel to all the local Hilbert spaces in the lattice.  Next, in the 
measurement step, the quantum states of all the nodes are read out.  Lastly, these results 
are streamed to neighboring sites to reinitialize the quantum processor in the state which 
corresponds to the new probability distribution. 
 
After the initialization step, a quantum lattice gas algorithm performs iterations of a 
collision operator and a streaming operator.  The latter operator shifts the state of a qubit 
from a given lattice site to its nearest neighbors in the lattice. 
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3. Details of Technical Accomplishments 

3.1 Entropy investigation 

3.1.1 Diffusion processing 
 
Diffusion processing has proven very useful for practical image enhancement, wherein 
the visual quality of an image is improved.  We have investigated methods of carrying 
out such processing in a combined classical-quantum computing environment.   
 
We performed investigations specifically examining the change in generalized entropies, 
including Renyi entropy [renyi].  We are motivated to examine the Renyi entropy 
because it seems to comport well with the ideas of scale spaces discussed above.  Like 
Tsallis entropy, Renyi entropy contains a parameter q ≠ 1:  Sq(p) = ln[Σj=1

N pj
q]/(1-q), 

where pj are normalized pixel values.  It also reduces to the Shannon-Wiener entropy 
when q → 1: SSW(p) = -Σj=1

N pj ln pj.  Here we have sums over pixel values (probabilities) 
since we are in the discrete (digital) case rather than integrals suitable to the continuous 
case.  We see that the Renyi entropy gives a sort of extrapolation of the Shannon-Wiener 
entropy [karolz].  The parameter q serves to introduce a type of weighting of pixel values 
into the entropy and may help to provide a hierarchical ordering of the image information.  
Therefore, it is directly connected to scale spaces.  
 
Figure 1 shows an example of the decrease of various entropies upon successive 
iterations of nonlinear diffusion with an exponential diffusivity function.  The image 
entropies are determined from the histogram of the distribution of pixel intensities.  
Matlab’s entropy just uses a different base (2) of logarithm than Shannon.  The change in 
image entropy during diffusion processing is a reflection of the loss of information in 
going from finer to coarser scales of resolution. 
 
We may list the following as desirable properties of entropy as applied to image 
processing tasks.  These points could serve as guidelines for future research (cf. [starck]), 
or as a start on axioms for developing measures of information content. 

• A single-value image has zero information content. 
 

• The amount of information in an image is independent of the             
background. 

 
• The amount of information is dependent on the noise.   

 
• The entropy should work in the same way for a pixel that has value V + δ and 

for a pixel with value V - δ, with V being the background value.  
 

• The amount of information is dependent on the spatial correlation in the 
image.  An image with large homogeneous features (above the noise) 
contains less information. 
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Figure 1.  Decrease of generalized image entropy with iteration number during nonlinear diffusion 

processing. 
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3.1.2 Entropy calculations for model physical systems 
Lately information theoretic concepts have been playing a larger role in quantum 
mechanics and quantum computing.  Information concepts have been employed in both 
fundamental discussions and in practical applications including synthesis and analysis of 
electron densities in position and momentum space [gadre].  Indeed, the sum of quantum 
position and momentum entropies has been advocated as a measure of wavefunction 
quality [gadre]. 
 
Quantum entropy provides a quantitative description about the uncertainty or lack of 
knowledge of an observable.  For instance, the entropy is one measure of the 
delocalization of a wavepacket.  The Shannon entropy provides an unambiguous measure 
which is complementary to the information content of a system.  With the recent research 
into quantum computing [kitaev, nielsen, qcreviews] there has been added attention on 
the fundamental physical limits of computation [cofpla] and here also the quantum 
entropy plays a role. 
 
We recall that Hirschman [hirschman] anticipated a strengthened quantum uncertainty 
principle.  Later, Deutsch [deutsch] and others [bbm] showed that the Heisenberg 
inequality does not properly express the quantum uncertainty principle and is generally 
too weak.  They introduced entropy measures such as we use for noncommuting 
observables. 
 
In [coffeycjp] we established the semiclassical position and momentum information 
entropies for a family of systems with rational potential energies and for the sech2 
potential energy.  The latter is an important instance since it applies to a potential with 
nonpolynomial form.  It also includes the case of an attractive delta-function potential for 
certain limit values of the potential parameters of strength and width.  The resulting 
semiclassical entropy relations have high utility.  This is because otherwise numerical 
computation may be required, or when closed form results for quantum systems are 
available, the multiple sum and product expressions do not readily yield physical 
information. 
 
A further motivation of our investigation was a recent presentation of the ground state 
position entropy of the Poeschl-Teller potential [atre].  The hyperbolic form of this 
potential is none other than the sech2  functional dependence that we employ.  The study 
[atre] gave some numerical results for excited states, although we note that the exact 
general excited state solution is expressible in terms of products of operators Op = d/dx - 
p tanh αx [lamb].  Since asymptotic relations are now known connecting quantum 
entropies to classical counterparts for both position [ruiz] and momentum 
[cofmomentum], we are able to derive semiclassical expressions applicable for high 
excited states. 
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The entropic uncertainty relation gives a lower bound to the sum of position S(x) and 
momentum S(p) entropies [bbm], 
 

                                          SQ
(x) + SQ

(p) ≥ D(1 + ln π),                                                    (2) 
 
for a D-dimensional system.  This inequality stresses the reciprocity of position and 
momentum spaces.  For if the wave function is concentrated in coordinate space, it will 
necessarily be more diffuse in momentum space, and vice versa.  Not surprisingly, the 
bound in Equation 2 is attained by Gaussian wave functions [bbm].  Relation 2 extends to 
other pairs of noncommuting observables A and B, S(A) + S(B) ≥ sAB, where sAB is a 
positive constant.  From Equation 2 follows the Heisenberg uncertainty relation, showing 
that this inequality is stronger. 
 
The entropy sum appears in many other lower and upper bounds.  Another lower bound 
including measurement device resolutions Δx of position and Δpx of momentum is 
[bbirula] 

                                         SQ
(x) + SQ

(p) ≥ 1 - ln 2 -ln Δx Δpx.                                         (3) 
 
An upper bound to the entropy sum can be prescribed in terms of the second moments in 
position and momentum space [gadre].  We note that the entropic uncertainty relation has 
been extended to nonzero temperatures T [abesuzuki].   
 
In the case of the sech2 potential we recall that the classical period of motion depends 
upon total energy E as T(E) ~ |E|-1/2.  We then determine how the classical position 
entropy SC

(x) varies logarithmically with the energy.  By invoking an asymptotic relation 
[ruiz], we then know how the quantum entropy of position SQ

(x) varies for the nth energy 
eigenstate.  Since we also know the values of the energy levels En, we determine 
explicitly the dependence of the semiclassical position entropy upon principle quantum 
number n.  We find the momentum entropy SC

(p), and therefore SQ
(p) for highly excited 

states [cofmomentum], to contain ln |E|-1/2 dependence, which is not surprising given that 
the Hamiltonian is quadratic in momentum p.  In the paper [coffeycjp] all these relations 
are made quantitative.  The calculations require fairly advanced integration techniques.  
In particular, we extended several known results employing the Gauss hypergeometric 
function. 
 
Semiclassical results are also possible and discussed for a family of rational potentials in 
[coffeycjp].  The treatment of this set of potentials also relies heavily upon the analytic 
properties of the hypergeometric function.  This family contains a parameter q, V(x) = -
V0/[1+(|x|/a)q], where V0 > 0, such that the limit q → ∞ yields the finite square well as 
shown in Figure 2.  For q = 2 the rational potential is very similar to the sech2 potential 
about the common minimum at x = 0. 
 



 
 

8 
 

 
 

Figure 2.  The sequence of potentials V(x)/V0 = -1/[1+(|x|/a)q] obtained for varying values of q is 
plotted versus x/a. 

3.2 New quantum algorithm for the modal value 
 
In this section we present a quantum algorithm for finding the most often occurring (or 
modal) value of a data set.  We thereby supplement other algorithms that can determine 
the mean value or similar quantities.  Our algorithm requires the combined use of 
quantum counting and extended quantum search. 
 
The mode is the most often occurring value in a data set and is an important statistic.  For 
the sake of definiteness in the description, we assume a data list of N elements, each entry 
being an integer in the range [1,d].  We propose an algorithm that uses a combination of 
quantum counting [brassard] and quantum search [boyer, grover1, grover2, grover3, 
nielsen], and makes use of the result that quantum search may be applied to find more 
than one target item in an unsorted list and that the number of target items need not be 
known beforehand.  Our method gives an operational complexity of O(d√N), as measured 
in the number of oracle calls.  The modal value need not be unique for our algorithm to 
succeed. 
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Our algorithm for determining the mode is related to other algorithms that also apply 
quantum search, give a quadratic speed up over the classical situation, and deliver other 
useful statistics.  These include an algorithm for finding the minimum or maximum value 
in a data set [durr].  In addition, the mean value may be determined by [grover2], and 
then the variance and higher moments of a data set may be determined.  This is because 
the moments may be appropriately written as averages.  In particular, the variance is the 
mean value of the quantity (x-<x>)2, where <x> is the mean value.  The median value 
may also be estimated, with an algorithm giving a nearly quadratic speed up over 
classical algorithms in the worst case [nayakwu].   
 
Because of the utility to compute averages, quantum search also has application to 
integration.  On the other hand, we are interested to have quantum algorithms to 
determine a large variety of statistics of given data.  Such statistics could be used for 
instance in analyzing digital images by applying them to the pixel intensities.  Operations 
such as thresholding and region segmentation or dilation and erosion could be performed 
based upon the statistical values. 
 
We recall that quantum counting relies on phase estimation and the Fourier transform.  
Quantum counting exploits the periodicity with the number of Grover iterates of the 
probability amplitude of the target state(s).  In turn, quantum phase estimation makes use 
of controlled-U2j operations and the inverse Fourier transform to give the best n-bit 
estimate of the phase φ of the eigenvalue eiφ of the unitary operator U. 
 
The quantum search algorithm has been extended in a number of ways, including with 
different iteration operators and different selective phase shifts (e.g., [biham, galindo, 
grover2]).  These are implementation specific matters that are not the focus of this 
discussion. 
 

3.2.1 The algorithm 
For simplicity of description, we assume that no value, including specifically the modal 
value, occurs more than N/2 times in the data set.  This is not a limitation, since if this 
number M ≥ N/2, the number of items in the data set may be doubled with N non-solution 
elements, and a modified oracle for quantum search may be suitably constructed [nielsen]. 
 
We assume that the data values are bounded by the range [1,d].  We consider two 
quantum registers |D〉 and |C〉, the data and count registers, of size O(log2 N) and O(log2 d) 
qubits respectively.  The algorithm has two main steps. 
 
First, we initialize the quantum system as |D〉|0〉.  Then for each data value in the first 
register we use quantum counting [brassard] to determine if that value occurs and if so 
how many times, such count being kept in the second register.  We then apply the 
quantum algorithm for determining the maximum value [durr] that uses the generalized 
quantum search algorithm [boyer] to the |C〉 register.  This returns the number of times M 
the modal value occurs.   
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Secondly, we reinitialize the system as |D〉|0〉.  We then execute an extended quantum 
search to find the data element(s) corresponding to the previously determined number of 
times that the modal value occurs.  In this case, the oracle function indicates which target 
item(s) occurs M times. 
 
This algorithm delivers both M and the corresponding modal value(s) of the data set.  By 
the use of extended quantum search, the modal value need not be unique. 
 

3.2.2 Discussion and Summary 
The probability of success of our algorithm can be boosted to be arbitrarily close to 1 
throughout.  Suppose we desire a small probability of failure 1 >> ε > 0.  To guarantee 
that all of our counting operations succeed with probability of at least 1-δ, we require 
complexity O(d√Nlog(d/δ)).  This gives our algorithm total probability ≥ (1/2)(1-δ) of 
success [furrow].  From here we appeal to amplitude amplification [bcwz] for maximum 
finding, which leads to an overall running time of O(d√Nlog(d/ε)√log(1/ε}, where ε is 
our total probability of failure.  
 
Our work serves to enlarge the collection of quantum algorithms for determining 
statistics of a data set to include the modal value.  A combination of both quantum 
counting and quantum search is required in order to avoid reducing to a classical O(N) 
complexity.  Our description here is not intended to be exhaustive and it seems likely that 
several variations on the ideas presented are possible. 
 

3.3 Quantum logic gate decomposition 
Here we consider two-qubit operators and provide a correspondence between their 
Schmidt number and controlled-NOT (CNOT) complexity, where the CNOT complexity 
is up to local unitary operations.  The results are obtained by complementary means, and 
a number of examples are given.  For full details, see [coffeydeiotte]. 
 
An operator Q acting on systems A and B may be written as the operator-Schmidt 
decomposition  

                                                   Q = Σj sj Aj ⊗ Bj,                                                         (4) 
 
where sj ≥ 0 and Aj and Bj are orthonormal operator bases for A and B, respectively.  This 
form may be proved constructively by using the singular value decomposition.  Given the 
representation (4), the Schmidt number Sch(Q) of the operator Q is defined as the number 
of nonzero coefficients sj. 
 
In this discussion we are concerned with two-qubit operators, and the relation of their 
Schmidt number to their controlled-NOT complexity.  It is known that two-qubit 
unitaries are equivalent to either 0, 1, 2, or 3 CNOT gates, where the equivalence is up to 
single-qubit rotations (e.g., [makhlin02]).  On the other hand, two-qubit unitary operators 
may have Schmidt numbers 1, 2, and 4, but not 3 [nielsenetal03].  (A similar result for 
states has been obtained in [dur02].) 



 
 

11 
 

 
We recall that the Schmidt number is an indicator of entanglement, but not a measure of 
entanglement.  For instance, let us compare the Bell state 
 
                                                |φ〉 = (1/√2)(|00〉 + |11〉),           
with the state 
                                               |ψ〉 = √(1-ε2)|00〉 + ε|11〉,    
 
where we take ε << 1.  Both of these states have Schmidt number two, but the Bell state 
is much more entangled, in fact maximally entangled.  This simple example reflects a 
more general situation where a single term dominates in the Schmidt decomposition.  The 
state is entangled, but it may be weakly so.  
 
In [coffeydeiotte] we provide a classification of CNOT complexity viz a viz the operator-
Schmidt decomposition, and prove it in alternative ways.  We then provide several 
examples, and discuss related topics.  Among these, we present relations between 
different approaches for finding the parameters of the canonical decomposition of two-
qubit operators.   
 
One may expect that as the Schmidt number increases, so too does the CNOT complexity.  
The main result is the following [coffeydeiotte].  Proposition:  A two-qubit operator U 
with CNOT complexity 2 or 3 has Sch(U) = 4, with CNOT complexity 1 or 2 has Sch(U) 
= 2, and with CNOT complexity 0 has Sch(U) = 1. 
 
Having considered CNOT complexity in relation to Schmidt number for two-qubit 
operators, an alternative way to express our classification is in terms of the Hartley 
strength, KHar(Q) ≡ log2[Sch(Q)].  We find that KHar(U) = 2 for operators U of CNOT 
complexity 2 or 3, KHar(U) = 1 for those operators with CNOT complexity 1 or 2, and 
finally KHar(U) = 0 for local unitaries.  Among examples, the particular swap operation us 
and CNOT itself have KHar = 1.  The SWAPα gate, with 0 < α ≤ 1, as well as F, the 
quantum Fourier transform on two qubits, have KHar = 2 and CNOT complexity 3.  The 
classification that we have given is hierarchical, in the sense that operators of higher 
CNOT complexity or Schmidt number may simulate those of lower complexity, but not 
the other way around. 
 
We have discussed alternative means for obtaining both the CNOT complexity of a two-
qubit operator and its canonical decomposition [coffeydeiotte, cts].  Besides the 
operational decompositions given elsewhere, we have illustrated the constructive 
procedure of Childs et al. [childs] for finding the three nonlocal parameters of a canonical 
decomposition. 
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The operator Schmidt decomposition has with it a normalization that is convenient for 
probability and entropy considerations.  For unitaries acting on systems A and B of 
dimensions dA and dB, respectively, the relation tr(UtU)=dAdB gives that the Schmidt 
coefficients sj satisfy Σj sj

2 = dAdB.  Thus, the normalized coefficients sj
2/dAdB form a 

probability distribution.  For the two-qubit operators U considered here, simply the 
numbers sj

2/4 give a probability distribution.  The Schmidt strength may be defined as the 
Shannon entropy of this distribution, providing a measure of the nonlocal content of U. 

3.4 Scheduling and logistics problems via adaptive quantum search 
 
The recent developments in the field of quantum computing have allowed computer 
scientists and others to view optimization problems from a new perspective.  By framing 
optimization as a problem of unordered database search, these problems can be solved 
using algorithms based on Grover's quantum search, theoretically providing quadratic 
speedup in runtime.  In 1996 Grover [grover, grover1, grover2, grover3] used the 
property of quantum parallelism to design an algorithm to search an unordered database 
in O(√N) time, a problem that classically takes O(N) time where N is the database size.  
It has been hypothesized that Grover's results can be generalized to implement adaptive 
search, an algorithm useful to optimization which cannot be implemented efficiently on 
classical machines.  Combining Grover adaptive search with quantum encoding 
techniques, it may be possible to provide better than quadratic speedup in optimizing 
some families of scheduling problems. 
 
Scheduling algorithms attempt to solve “scheduling problems”, which consist of finding 
the optimal order and distribution of a set of tasks on a set of machines or other resources.  
Classically, this class of problem is NP-hard, meaning that it cannot be solved in 
polynomial time, and practical algorithms to the problem set typically provide a “good” 
solution rather than the optimal solution [lu].  Application of Grover's quantum search 
[grover] to these problems typically still cannot produce polynomial-time algorithms; 
however, it can provide improved exponential-time algorithms that are more efficient 
than classical solutions.  For example, the algorithm proposed in [lu] claims to return a 
schedule for running N jobs on M non-homogeneous machines as well as the longest job 
runtime in O(√MN) time.  This problem is known as the R||Cmax problem, and classically 
requires O(MN) time to solve. Lu and Marinescu describe in [lu] a systematic approach to 
reformulating other scheduling problems so that they can take advantage of Grover's 
search. 
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Scheduling problems emerge in a wide variety of scenarios.  One example is in operating 
system design, where computer resources must be allocated for multiple jobs on a system.  
Another example is dividing tasks among workers in a business.  Employees have varied 
abilities, and some are suited better to a certain type of job than others.  Scheduling 
algorithms can help managers decide who should be working on what and when.  The 
transportation industry faces a variety of scheduling problems, which include the 
additional complexity of requiring airplanes, trains, and trucks to follow connected routes.  
As quantum computers become commercially viable, quantum scheduling algorithms can 
be used to solve practical scheduling problems which are very difficult and time 
consuming to solve classically. 
 
Before discussing adaptive search, we describe some necessary background on Grover's 
search algorithm [grover, grover1, grover2, kaye, nielsen].  Grover's search is an 
algorithm to search an unordered database.  This problem is like trying to search a phone 
book to find which name corresponds to a phone number.  Since there is no structural 
information to narrow down the search, classically each entry in the phone book must be 
checked sequentially to see if the associated entry matches the queried number.  In the 
average case, the algorithm will search half of the entries before finding the target.  In the 
worst case, there is no target (the number belongs to someone not in the phone book), and 
the algorithm searches the whole database before returning.  Grover's algorithm takes 
advantage of a quantum computer's ability to manipulate a superposition of input states 
simultaneously and can find the target entry in O(√N) “lookups”, where N is the number 
of elements in the database.  The notion of a lookup (oracle function query) is slightly 
different between the quantum mechanical and the classical techniques since the quantum 
algorithm can “check” all of the input states at once.  In some cases, there may be 
multiple target states in the database, and a successful search would return any of these 
states. 
 
The first step of the algorithm is to initialize the system to an equal superposition of all 
input states.  Typically, N is assumed to be a power of 2, so N = 2n.  Since memory is 
usually available in powers of 2, this assumption simplifies the algorithm because it does 
not need to account for unused states. 
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Next, the “Grover gate” is applied [π√N}/4] times.  The Grover gate is made of two main 
components, a selective phase shift Uf and an “inversion about average” function Uψ.  
The selective phase shift rotates the target states by π, essentially inverting their 
probability amplitudes.  This function is known as the “oracle” function, which is the 
quantum equivalent of the “lookup” function.  Unlike the classical version, it does not 
directly indicate what a target value is, but merely affects the probability amplitude of the 
target states.  The inversion about average operation reflects the probability amplitude of 
each state about the average amplitude.  These two operations increase the amplitude of 
the target state and reduce the probability of all other states.  Since the probability of 
measuring a particular value is the corresponding state's amplitude squared, when a 
measurement is performed, a target value will be observed with probability greater than 
1/2.  Grover's search does not return a target state with probability 1, but if it is performed 
more than once, the probability that the result returned is a target state is increased.  The 
returned result could also be checked classically to verify correctness, although this 
confirmation is not applicable in all cases. 
 
While the number of Grover iterations required to maximize the amplitude of the target 
state(s) is less than O(√N), the amplitude fluctuates significantly based on the number of 
iterations and the proportion of the states that are marked.  The probability of finding a 
target state is given by: 

gr(p) = sin2[(2r + 1)arcsin(√p)]      (5) 
 
where p is the fraction of states that are marked and r is the number of applications of the 
Grover gate [baritompa].  A plot of g6(p) is shown in Figure 3.  Depending on the value 
of p, 6 applications of the Grover gate could be successful with either very high, or very 
low probability.  If the ratio p was known, one could easily determine the best number of 
iterations to apply, but p is typically unknown.   
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Figure 3.  The probability distribution of observing a target state after 6 applications of the Grover 
gate with the fraction p of target states.  Depending on the value of p, the search success probability 

varies greatly. 

3.4.1 Adaptive Search 
Adaptive search is an algorithm for finding the minimum value of f(x) for a finite set of 
values x ∈ X by selecting decreasing values f(x) until the minimum is reached.  The 
algorithm is as follows [bulger]: 
 
x = random element of X 
y = f(x) 
FOR {i = 1,2... while f(xi) is not the minimum of f(x) for x ∈ X} 
  Xi = {x ∈ X | f(x) < yi} 
  x' = random element of Xi 
  y' = f(x') 
  xi+1 = x' and yi+1 = y' 
ENDFOR 
return x' 
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There are two major problems with implementing this algorithm classically.  First, the 
terminating condition is that f(xi) is not the minimum, meaning that in order to find value, 
x, that minimizes f(x), the minimum of f(x) must already be known.  Second, identifying 
the set Xi, known as the improving region, classically requires checking each element of 
the previous improving region, negating any potential speedup of adaptive search.  
Grover's search, however, provides remedies for both of these flaws. 
 
A quantum algorithm to find the minimum of a finite set was first proposed by Durr and 
Hoyer in [durr].  They proposed replacing the stopping condition by a time limit restraint.  
According to their analysis, after running for 22.5√N + 1.4log2N units of time, their 
algorithm would return the minimum value with probability of greater than 1/2.  
Baritompa et al. determined that this result had incorrect constants, but was correct in 
order of magnitude, providing more rigorous analysis considering other parameters of the 
search [baritompa].   
 
The second problem is solved naturally using the Grover operator.  Using the oracle 
function, h(w) = (f(w) < Y), the target states are exactly the states in the improving region.  
A successful application of Grover search with this oracle function will return a random 
element from the improving region with uniform distribution.  As xi becomes 
increasingly close to the optimal value, however, the improving region shrinks and more 
Grover iterations are potentially required for the search to be successful. 
 
Grover's search introduces a new complication to adaptive search due to the probability 
distribution defined by gr(p).  Each successful iteration of adaptive search will decrease 
the fraction p, having a potentially dramatic effect on the probability of search success.  If 
the number of applications of the Grover gate does not change between iterations, it is 
possible to stall at a point of low success probability, the minima of Figure 3.  Varying 
the value of r can potentially avoid this problem and several methods of “rotation 
scheduling” have been proposed.  The first is to select a random value between 0 and m 
where m is initially 1, and is multiplied by a factor λ after each failed search attempt 
[baritompa].  This approach has the advantage of being simple to compute, but m grows 
exponentially with the number of failures.  Baritompa et al. propose a predefined 
sequence of rotations based on an estimate of p after each iteration.  This sequence of r 
values performs slightly better in some cases, but computing the sequence requires 
exponential time and this sequence performs equally well with the randomized sequence 
when there are repeated values in the range in the search domain.  Neither approach 
guarantees search success as p approaches 1/N.  
 
Adaptive search has several important properties for optimization.  First, unlike many 
classical minimization algorithms, adaptive search is not affected by local minima.  Since 
the improving region is defined by the range of the function, not the domain, the global 
minimum will never be excluded from the improving region.  Second, while most of the 
work done by the Grover implementation of adaptive search is done during the final 
iteration when the improving region is as small as possible, the intermediate results are 
generally good approximations of the minimum, especially if there are multiple values 
only slightly greater than the global minimum.   
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3.4.2 Framing Optimization Problems as Search Problems 
The concept of quantum parallelism makes it possible to treat an optimization problem as 
a search problem with far fewer resources than are classically required.  Classically, a 
brute force approach to optimization would be to test the set of all possible outcomes of 
the system being optimized (the state space of the system).  Since the state space typically 
grows exponentially in size as systems become more complex, searching the entirety of 
the state space is usually computationally intractable.  To overcome this, pruning is 
typically applied to reduce the size of the state space by excluding clearly non optimal or 
duplicate results.  Correct and effective pruning requires knowledge of attributes and 
symmetries of the system that are often either unknown, or may not exist. 
 
Classically, each state in the state space must be computed separately, either sequentially, 
or with a low level of parallellization.  In a quantum computer, however, the entire 
statespace can be computed in a superposition with one operation.  Once the state space 
has been prepared, algorithms like Grover adaptive search can be applied to determine 
the optimum solution. 
 
Lu and Marinescu propose in [lu] a procedure for generating the state space for the R || 
Cmax problem, which appears to be easily adaptable to other optimization situations.  The 
quantum circuit described makes use of the entanglement between qubits by using 
controlled gates triggered by a set of index qubits.  A circuit computing the state |i〉|Gi〉 is 
shown in Figure 4.  If the input to the index qubits is an equal superposition of states, 
which can easily be prepared with Hadamard gates, and if all the necessary gates can be 
implemented efficiently, circuits like this can be chained together to create an equal 
superposition of all states in the state space. 
  

 
 
 
Figure 4.  A quantum circuit computing the state |i〉|Gi〉.  The index lines ensure that the gates Gi are 

each applied only once. 
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3.4.3 Using Grover Search to Find the Minimum 
Once the state space has been computed, Grover adaptive search can be used to find the 
minimum or maximum of a particular parameter encoded in the superposition.  Using an 
oracle function h(w) defined as h(w) = (f(w) < Y) where Y is an adjustable threshold 
value and w is the set of qubits of interest, an adaptive search like the one described in 
[baritompa] can be used to find the optimal value.  The encoding described by Lu and 
Marinescu entangles the input states with the output states, so when a measurement is 
finally performed, the input states collapse into the set of inputs producing the measured 
output.  This algorithm returns not only the optimal output value, but how to achieve it.  
Using a different encoding circuit or oracle function would produce a circuit that could 
minimize or maximize a variety of parameters of a system.   

3.4.4 Results: Adaptive search simulation 
In order to analyze the properties of adaptive search, several simulations were developed 
using classical techniques.  These simulations verified the desirable properties of adaptive 
search.  For example, the 1D function shown in Figure 5 demonstrates that the algorithm 
is not affected by local minima.  Also, after a small number of iterations, all subsequent 
values are within a small range of the optimal value, even though they are in 
disconnected parts of the domain. 
 

 
Figure 5.  Successive iterations of adaptive search (circles) on a 1D function (solid line) with multiple 

local minima.  The search converges quickly to the optimum value despite local extrema. 
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Extending this simulation to a 2D function already begins to demonstrate the limits of 
classical implementations of adaptive search.  Since the domain grows exponentially in 
the number of dimensions, each additional dimension requires exponentially more 
resources to find the optimal value.  However, in 2 dimensions, the same properties hold, 
as shown in Figure 6 and Figure 7. 

 
 
Figure 6.  A 3D contour plot of a 2D function with successive adaptive search iterates.  2D adaptive 

search exhibits the same desirable properties as the 1D variant. 

 
 

Figure 7.  Adaptive search applied to the Rosenbrock banana function, a standard optimization 
objective function [bananaFunc]. 
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3.4.5 Rotation Schedule Implementation 
Baritompa et al. provide in [baritompa] an algorithm for computing a sequence of 
rotation counts to improve the probability of success of sequential adaptive search 
iterations.  The algorithm requires indefinite integration of successive, increasingly 
complicated functions, which are not easily integrated.  One way to actually compute 
these integrals is to represent the function gr(p) as a polynomial.  The algorithm to 
generate the rotation schedule was implemented using a Taylor series approximation to 
gr(p) as well as an exact polynomial representation based on the Gauss hypergeometric 
function 2F1,   
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Examples are g1(p) = (3 - 4p)2 p = 9p – 24p2 + 16p3  and g2(p) = p[5 + 4p(4p – 5)]2.  The 
degree of the terminating 2F1 function in Equation 6 is r, so that the overall degree of gr(p) 
in p is 2r + 1.  Due to the oscillatory nature of gr(p), shown in Figure 3, a very high order 
Taylor polynomial is required as r grows, rendering this approach infeasible at 
sufficiently large r.  The hypergeometric function-based approach does not suffer from 
this problem, but as the integrals become increasingly complex, the computation time 
increases dramatically.  With computational resources readily available (desktop PC), the 
hypergeometric function implementation was able to compute the first 30 terms of the 
rotation schedule in 24 hours in Mathematica.  A plot of the first 30 terms of the sequence 
is shown in Figure 8. 
 

 
 

Figure 8.  The first 30 terms of the rotation schedule described by [baritompa]. 
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3.4.6 Future Work 

3.4.6.1  Adaptive Search 

The usefulness of Grover adaptive search hinges on the hypothesis that an oracle function 
like h(w) = (f(w) < Y) can be implemented efficiently.  More research is required to 
design and efficiently implement a quantum circuit that can implement comparison 
operators such as “greater than” or “less than”.'  This gate must be able to take two inputs 
because the threshold value Y will change with each iteration, so a hard coded value will 
not suffice.  It remains an open question just how efficiently the needed oracles for 
generic problems may be implemented. 
 
Baritompa et al. analyzed the Grover adaptive search algorithm to determine the expected 
number of iterations before finding the optimal value [baritompa].  However, a bound on 
how close to the optimal value can be expected after a number of iterations would be 
valuable as well.  For example, if the second most optimal value can be found in half the 
time required to find the optimal value, it may be unnecessary to perform as many 
iterations. 

3.4.6.2 Scheduling Problem Encoding 

The encoding system developed in [lu] appears to be valid, however, there are a number 
of extensions that would likely be required in practice.  The circuit as is requires that all 
inputs be integers.  This is not a limitation in practice, since the least common multiple of 
all necessarily rational input parameters may be used. 

3.4.6.3 Termination of the algorithm 

Setting a run time bound on the size of the improving region to the total domain is a 
working possibility for a criterion for terminating the algorithm.  However, many 
common global minima could be problematic.  We may note that even in the easier “find 
Min” situation of Durr and Hoyer there is an interrupt on run time.  The main question is 
again how well this can be done for generic problems. 

3.4.6.4 Combining encoding and search 

Once the quantum encoding of a scheduling problem is shown to be correct, and adaptive 
search has been shown to be as efficient as predicted, the two must be combined.  In 
order to show that scheduling problems can actually be solved using this technique, the 
whole system must be simulated and benchmarked.  The number of quantum gates 
required to construct these circuits could also be intractably large, so optimization of the 
circuit implementation may also be necessary to realize this algorithm.   
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3.4.6.5 Concluding thoughts on adaptive search 

As quantum computers become closer to being viable, the development of quantum 
algorithms is becoming increasingly important.  A quantum computer has the potential to 
solve problems such as scheduling problems that classically require prohibitive resources.  
Solutions to scheduling problems would have a broad reaching, positive impact on a 
variety of industries.  Techniques exist to solve pieces of scheduling problems on a 
quantum computer: a quantum encoding of the problem, and an algorithm for 
optimization.  By combining these techniques, it may be possible to solve scheduling 
problems that are intractable using classical techniques. 
 

3.5 Feynman diagram integrals and special functions 
 
Perturbative quantum field theory visually and systematically describes higher order 
corrections by means of Feynman diagrams.  In many cases the corresponding 
multidimensional Feynman integrals may be reduced all the way to one dimension.  In 
recent years both rigorously and empirically based expressions for these integrals in 
terms of values of special functions have appeared.  In a series of articles, we have made 
a number of contributions for closed form results for reduced Feynman integrals 
[cofjmp1, cofjmp2, cj, cl, coffey08].  We were also able to advance the state of the art of 
the theory for particular special functions of mathematical physics, including the Clausen 
function Cl2 and the dilogarithm function Li2.  Other specific special functions that were 
very useful included the generalized hypergeometric functions and the polylogarithms.  
Results to date indicate connections between multiple subjects including hyperbolic 
geometry, analytic number theory, special functions, and Feynman diagrams.  A very 
recent example [cofjmp1] evaluates a highly symmetric Feynman integral in terms of a 
remarkably compact difference of Clausen function Cl2 values, proving a numerically 
based conjecture that was open for approximately ten years.   
 
A certain dilogarithmic integral I7 turns up in a number of contexts including Feynman 
diagram calculations, volumes of tetrahedra in hyperbolic geometry, knot theory, and 
conjectured relations in analytic number theory.  We provided an alternative explicit 
evaluation of a parameterized family of integrals containing this particular case.  By 
invoking the Bloch-Wigner form of the dilogarithm function, we produced an equivalent 
result, giving a third evaluation of I7.  We also alternatively formulated some conjectures 
which we posed in terms of values of the specific Clausen function Cl2 [cofjmp2, 
coffey08]. 
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The evaluation of harmonic number sums has been useful in several areas of mathematics, 
including analytic number theory, for some time.  More recently, the evaluation of Euler 
sums has been shown important in various areas of theoretical physics, including in 
support of Feynman diagram calculations.  Even more recently, it has been shown that 
the evaluation of generalized harmonic number sums is very useful in resolving open 
questions on Feynman diagram contributions and relations among special functions 
[cofjmp1], including the dilogarithm, Clausen function, and generalized hypergeometric 
function.  Harmonic number sums also occur in computer science in the efficiency 
analysis of algorithms.  Especially in the analysis of sorting and searching algorithms, 
harmonic number sum evaluation and asymptotic analyses are useful. 
 
Motivated by such applications, we have developed results on generalized harmonic 
number sums [cl].  We give results where evaluations are possible in terms of generic 
polylogarithm functions Lik, although we give specializations to the dilogarithmic and 
trilogarithmic cases, where a fuller body of theory exists, and relatively more instances of 
explicit expression of specific values in terms of elementary functions is possible.  We 
demonstrated the evaluation of a class of generalized harmonic number sums, presented 
examples, and then gave representative results for obtaining identities among harmonic 
number sums in terms of polylogarithmic functions. 
 
As a result of these research activities, the PI was invited as a speaker at a very recent 
workshop dealing with Feynman diagrams, multiple zeta values, and integrals 
[workshop].  Other areas of mathematics covered in this workshop were abstract algebra, 
combinatorics, and graph theory.  The main areas of theoretical physics concerned were 
quantum field theory and quantum statistical mechanics.  The PI gave two lectures at the 
graduate level on Feynman diagrams, integration, and special functions. 

3.6 QLGAs for the Maxwell equations 
 
In our research we showed that a quantum lattice gas approach can provide a viable 
means for numerically solving the classical Maxwell equations.  By casting the Maxwell 
equations in Dirac form, the propagator may be discretized, and we described [coffey] 
how the accuracy relative to the time step may be systematically increased.  The quantum 
lattice gas form of the discretization is suitable for implementation on hybrid classical-
quantum computers.  In the published paper [coffey] we also discuss a number of 
extensions, including application to inhomogeneous media. 
 
The analytic and numerical modeling of electromagnetic phenomena is a subject of much 
practical importance.  Due to a panoply of ingredients including geometry, 
dimensionality, boundary, initial, and radiation conditions, and constitutive relations, 
nature presents a rich variety of these phenomena. 
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In this section we introduce the formulation of the Maxwell equations as quantum lattice 
gas algorithms.  In this way, the partial differential equations of electromagnetism are 
discretized in both space and time, permitting numerical simulation.  Here we concentrate 
on the theoretical framework, but we provide sufficient detail that software 
implementations could be developed.  Many extensions of our approach are possible, and 
we described several of them elsewhere [coffey].  
 
We exploit the formulation of the Maxwell equations for the electromagnetic field in 
terms of a multicomponent wave function, and this wave function need not correspond to 
a spin 1 particle.  Auxiliary conditions are used as necessary to ensure that the full set of 
Maxwell equations is satisfied. 
 
It has been known for some time that the Maxwell equations may be written in Dirac 
form [iwoprd, moses].  We complemented this framework, and provided supporting 
techniques so that competitive algorithms could be developed.  Generally the Maxwell 
equations in the continuous setting may be brought into the form: 
 

∂tψ = κ S •∇ψ,                                                    (7) 
 
where κ is a constant, Sj are three spin matrices of suitable dimension, and ψ the 
corresponding wave function.  We focused on ∇ as the three dimensional (3D) gradient 
operator, but this is by no means necessary.  The result of discretizing Equation 7 is to 
present the time evolution of ψ in terms of spatial shift and spin-component mixing 
operations.  In the language used in a very related setting, these operations may be 
rewritten as streaming and collision operations, respectively.   
 
Having written a discretization of Equation 7, we take the further step of writing the 
discrete evolution operator in terms of a product of collision and streaming operators.  It 
is this form of the discrete evolution that could be implemented on a hybrid processor, 
wherein local nodes of a few qubits are connected via classical communication channels 
to neighboring nodes.  The on-site collision operator generates entanglement within the 
individual nodes.  As it is unitary, it can be realized in a quantum system, and further 
provides a stable algorithm.  In sum, our procedure shows how to discretize systems such 
as Equation 7 in a number of settings, and importantly in a factorized form suitable to 
combined classical-quantum computing. 
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Lattice gas algorithms have proved very efficient and versatile in a variety of contexts, 
including fluid dynamics and plasma physics and other multi-particle simulations 
[rothman, yepez, vahala].  They have been used to numerically solve the Navier Stokes 
and Boltzmann equations in diverse geometries, upon a range of computing platforms.  A 
key feature of these algorithms is their suitability for parallel and distributed computing 
(e.g., [harting]).  We point out that it should be possible to develop these same 
advantages for solving the Maxwell equations.  Moreover, there are now prospects for 
nearer term hybrid classical-quantum computing (e.g., [pravia, berns, chen06]) as well as 
more distant purely quantum processors [nielsen].  Various quantum lattice gas 
algorithms have been proposed for the solution of the Dirac and Schroedinger equations 
[boghosian98, yepez02].  Further development of the types of algorithms that we suggest 
would allow the exploitation of entanglement in quantum hardware.  This would be an 
additional resource, on top of the classical parallelization aspects of these algorithms. 
 
Significant portions of our work made use of results of I. Bialynicki-Birula [iwoprd, 
iwoacta, iwohep], who was mainly interested in theoretical constructions.  In [coffey] we 
recalled the formulation of the Maxwell equations in Dirac (spin 1/2) form, providing a 
self-contained development, which may make this subject accessible to a wider audience.  
We then considered a spin 1 formulation of the Maxwell equations and again took it as 
the basis of a computational method.  For both formulations, we provided supporting 
details.  We then described a number of extensions, including how to improve the 
convergence rate of the discretizations, this latter important topic applies to either the 
spin 1/2 or spin 1 formulations. 
 
We have shown how the multicomponent wave equations of relativistic quantum 
mechanics may be adapted for a description and numerical solution of the classical 
Maxwell equations.  Written in a spin 1 form, the wave function has three independent 
components that are directly applicable to describing the massless photon, whereas 
written in a spin 1/2 Dirac form, the four-component wave function requires a constraint 
condition.  By discretizing the quantum evolution operator (propagator), we have derived 
algorithms for integrating the Maxwell equations.  These algorithms provide an explicit 
numerical integrator and are suitable to any number of spatial dimensions.  This approach 
contrasts with that of first discretizing the system Hamiltonian, which may often lead to 
physical and mathematical difficulties. 
 
As seen in detail in [coffey], there are equivalences with effective finite difference 
approximations of the partial differential equations, and this is not surprising 
mathematically.  However, physically our approach provides connections with the path 
integral formulation of quantum mechanics, and this was a motivating reason behind the 
work of [iwoprd].  Indeed, an iteration of a discretized time evolution gives a sum over 
Dirac particle histories. 
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We emphasize that mathematical equivalences are quite distinct from software and 
hardware implementations.  Whereas, to be very specific, a finite difference 
representation is suitable for either serial or parallel processing, the lattice gas forms are 
also very suited to a parallel architecture.  The lattice gas representation comprises two 
main stages.  One is the local aspect, embodied in W or collision matrices C acting on 
local field or wave function components.  The other is the advective (or streaming) stage 
shown by the shift operators moving field information to neighboring sites.  Collections 
of lattice sites may be mapped to local computing nodes of minimal resources within a 
parallel machine.  For instance, for a square lattice, blocks of rows or columns of the 
lattice may be mapped to individual processors, or instead checkerboard subblocks may 
be mapped to the processors.  In this way, parallel computers with a large number of 
nodes but each with limited computing capability and memory may be taken advantage 
of, with many variations on these ideas possible.   
 
There is no difficulty in increasing the rate of convergence of our family of algorithms.  
One has only to apply systematic Trotter-Suzuki formulas [suzuki] for improved 
discretization of the propagator.   
 
We have briefly given an extension of the lattice gas approach to inhomogeneous media, 
and expect that other extensions are possible [coffey].  Already in one or two dimensions, 
this opens the way for solving a variety of interesting and practical problems. 
 
While we have focused on the Maxwell equations, many other applications could be 
developed when the systems of governing partial differential equations can be cast in the 
form of Equation 7, and this point furthers the argument for the very wide applicability of 
lattice gas algorithms.  One example extended coupled system is the Maxwell-
Schroedinger equations.  Here the absolute square of the wave function ψ2 and ψ*∇ψ-
ψ∇ψ* feed into the charge and current densities, respectively.  Another example coupled  
system is the Maxwell-London equations for a phenomenological description of 
superconductivity, wherein the London relation links the vector potential to the 
supercurrent density. 
 

3.7 Telegraph Equation QLGA 
 
The telegraph equation combines features of both the diffusion and wave equations and 
has many applications to heat propagation, transport in disordered media, image 
enhancement, and elsewhere.  In this section we give an overview of a new quantum 
lattice gas algorithm for this partial differential equation with one spatial dimension.  This 
algorithm generalizes one previously known for the diffusion equation.  In [cc2009] we 
present many further details, including an analysis of the algorithm and accompanying 
simulation results.  The QLGA is suitable for simulation on combined classical-quantum 
computers. 
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Quantum lattice gas algorithms are well known to be versatile in simulating a wide range 
of physical phenenomena.  Like their relatives cellular automata, from simple local rules, 
complex dynamics may emerge [brennen, romanelli]. 
 
Lattice gas algorithms are attractive due to their relative simplicity, physical foundations, 
and suitability for implementation on parallel computing architectures.  Lattice gas 
algorithms may incorporate conservation of mass, momentum, and energy, and in the 
quantum context, probability.  Lattice gas algorithms have proven successful in a range 
of applications including fluid dynamics and plasma physics and other multi-particle 
simulations [doolen, rothman, yepez]. 
 
Recent experiments and proposals for combined classical-quantum computing (e.g., 
[berns, chen06, pravia]) further motivate the development of quantum lattice gas methods.  
For instance, a QLGA for the linear diffusion equation has been demonstrated in a liquid-
state nuclear magnetic resonance system [pravia].  In addition, a detailed design for 
executing a QLGA for the linear diffusion equation with superconducting qubits has been 
given [berns].  Such implementations could allow the exploitation of quantum 
entanglement well before large-scale purely quantum computers are constructed. 
 
In this section we discuss a new QLGA for simulation of the telegraph equation.  This 
hyperbolic partial differential equation combines aspects of both the wave and diffusion 
equations.  As such, our algorithm subsumes some earlier work restricted to the diffusion 
equation.  Representative numerical results verifying the algorithm and its analysis are 
published elsewhere [cc2009].   
 
Classical connections between random walk and the telegraph equation have been known 
for quite some time [goldstein, kac, gaveau, morette, codling].  In such a model on a one-
dimensional (1D) lattice, a walker steps a distance Δx in time increment τ randomly to 
the left or right, with additionally a probability aτ to reverse direction.  In the 
simultaneous limit that a → ∞ as well as the speed v, such that the ratio 2a/v2 ≡ 1/D 
remains constant, the diffusion equation results,  
 

                                                       .2
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x
uD

t
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∂
∂

=
∂
∂                                                             (8) 

 
Another situation for which this equation results is when aτ =1/2.  Then there is equal 
probability for a move to the left or right.  In a sense, we seek a quantum version of this 
stochastic model. 
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We also mention a connection of the telegraph equation with relativistic quantum 
mechanics and the point of view of a Dirac particle as moving at the speed of light c with 
random reversals of direction.  If we write the telegraph equation in the form (∂t

2-2a∂t-c2 

∂x
2)P = 0, then the change of dependent variable P(x,t) = e-a tψ(x,t) shows that ψ satisfies 

the Klein-Gordon equation (∂t
2-c2∂x

2-a2)ψ = 0.  Both the telegraph and Klein-Gordon 
equations may be factored into a pair of equations first order in time, with the latter 
instance giving the well known Dirac equation.  In the case of a Dirac particle, we 
identify the frequency of probability of reversal a = m0c2/ih’, with m0c2 the rest mass 
energy [gaveau].  This can provide, for example, an interpretation for the Zitterbewegung 
phenomena of Dirac theory. 
 
Classically or quantum mechanically, lattice gas dynamics may be thought of in terms of 
scattering due to local potentials.  There is an associated scattering matrix, leading to 
transmission and reflection coefficients.  Building upon such an approach, recent work 
has used quantum random walk to examine diffusion in 1D crystalline nanostructures 
[godoy].  The telegraph equation results in the continuum limit for an irreversible, 
second-order Markov process. 
 
A QLGA includes the sequential repetition of four main steps [yepez, yepez01, yepez06, 
vahala].  First, initialization creates the quantum-mechanical initial state that corresponds 
to the intial probability distribution for a partial differential equation to be solved.  
Secondly, in the collision step, a unitary transformation is applied in parallel to all the 
local Hilbert spaces in the lattice.  Next, in the measurement step, the quantum states of 
all the nodes are read out.  Lastly, these results are shifted or “streamed” to neighboring 
lattices sites, providing reinitialization of the lattice in the state which corresponds to the 
updated probability distribution. 
 
QLGAs have been shown to solve the diffusion, Burgers, Boltzmann, Schroedinger, and 
Dirac equations [yepez, vahala, yepez01, boghosian98, yepez02].  In some QLGAs (e.g., 
[boghosian98, yepez02]) the measurement step is omitted and the generally entangled 
quantum states are streamed.  This places much stronger requirements on the quantum 
computing hardware, but gives an exponential speed up over classical simulation.  We 
discuss an algorithm with intermediate-time measurements.   
 
There is much applications interest in both classical and QLGAs.  Elsewhere 
[coffeycolburn], we have demonstrated that hybrid computing, running versions of 
diffusion processing, could be useful for the enhancement of digital images.  In particular, 
diffusion of intensities, with a constraint on the difference of pixel iterate values, gives 
selective smoothing within an image.  In another very recent scenario, we have developed 
QLGAs for the Maxwell equations by starting from a Dirac formulation [coffey].  The 
algorithms may be executed with measurement only at the final time, resulting in an 
exponential speed up over classical simulation.   
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Very recently, a telegraph-diffusion operator has been proposed for purposes of image 
restoration and denoising [ratner].  This approach requires the solution of a nonlinear 
telegraph equation with diffusivity dependent upon the gradient of the intensity function.  
Our results now indicate the possibility to apply a QLGA with a signal strength constraint 
for a 1D telegraph equation for obtaining the denoising of digital signals. 
 
A drawback of the ordinary diffusion Equation 8 for many applications is that the 
associated propagation speed is infinite.  For any positive time t, there can be diffusion, 
albeit usually very small, to arbitrarily large distances.  The telegraph equation offers one 
way of correcting this aspect:  it models diffusion with a finite propagation speed.  This 
can be very important for modeling diffusion in a variety of contexts including turbulent 
fluids and biological processes and ecological problems (e.g., [codling]).  The search for 
a fully special relativistic diffusion equation remains an open and important problem for 
statistical physics and other areas, but the telegraph equation provides an improvement 
over Equation 8. 
 
Whereas the parabolic Equation 8 has a number of well known properties, including 
satisfying a maximum principle, the behavior of solutions of the telegraph equation is 
generally more complicated.  As shown for instance by a Fourier series solution of the 
telegraph equation with special zero Dirichlet or Neumann boundary conditions, there is 
a variety of behavior of the solutions of the telegraph equation. 
 
The QLGA has a significant numerical advantage inherent in its formulation.  This is the 
guaranteed stability due to the use of a unitary collision operator.  For a hyperbolic 
equation as we are dealing with here, this is no small matter.  We recall that in 
comparison an explicit finite difference scheme for a wave equation must satisfy the 
Courant-Friedrichs-Levy condition [gasdynbk] as a necessary constraint.  Roughly 
described, the Courant-Friedrichs-Levy condition arises from ensuring that the domain of 
dependence of the numerical method contains the domain of dependence of the partial 
differential equation being solved.  It has the direct consequence of limiting how large the 
time step may be taken in relation to the size of the spatial discretization.  The severity of 
the Courant-Friedrichs-Levy condition can be reduced only at substantial computational 
cost.  Either the time step is drastically reduced, or another method such as an implicit 
scheme is required.  In the latter event, there is significant additional computational cost 
in solving a set of coupled equations at each time iteration.  Even then, if the boundary 
conditions are not treated fully implicitly also, the Courant-Friedrichs-Levy constraint 
will become manifest. 
 
A QLGA also offers a significant advantage as far as realizing a hybrid architecture.  This 
is because if the nodal qubits have sufficiently long coherence time, no quantum error 
correction is required.  In contrast, many other methods require quantum error correction, 
and this is typically a tremendous increase in resource.  Typical error correcting 
techniques encode one logical qubit in either 5 or 7 physical qubits.  On top of this, 
several levels of concatenation are used.   
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The 1D telegraph equation arises as the probability density function (pdf) for the 
displacement at time t for persistent random walk on a 1D lattice in the continuum limit.  
With a form of momentum introduced into the random walk, persistent random walk has 
applications in describing scattering and diffusion in disordered media.  As we have 
mentioned, the telegraph equation has solutions with a finite velocity of propagation, and 
this can provide an advantage for describing heat propagation, light dispersion in turbid 
media, or in biological modeling.   
 
We have discussed a new QLGA for the 1D telegraph equation that subsumes one for the 
diffusion equation, while complementing that for the 1D Dirac equation.  Both the 
telegraph and Dirac equations may be developed from microscopic models with particles 
undergoing random reversals of direction.  The resulting QLGA for the 1D telegraph 
equation is highly parallelizable and well founded on physical principles including 
conservation laws.  This algorithm offers the prospect for simulation on combined 
classical-quantum computing architectures.  In such a computing environment, local 
nodes with two qubits each are connected to nearest neighbors with classical 
communication. 
 
We have verified our QLGA on model problems which take into account the boundary 
conditions and the initial conditions on both the solution and its first order time derivative 
[cc2009].  Test problems included those from references [goldstein] and [morette].  
Despite using an approximation to implement non periodic boundary conditions for some 
test problems, we were still able to find accurate solutions.  The incorporation of further 
types of boundary conditions is an area for future research. 
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4. Summary 
 
The concepts of entropy and of diffusion have been common themes throughout much of 
this research.  Diffusion and the accompanying idea of scale space find many applications 
in image sharpening and restoration and other processing tasks.  Entropy measures 
provide a useful monitor of diffusion processing, as well as a way to understand the 
information content of images.   
 
In the overall scope of the investigations, we were able to make contributions to quantum 
information science over a fairly broad range of topics, from a new high level algorithm 
to detailed logic gate decompositions.  The vast majority of these topics are additionally 
complemented with external publications. 
 
As a byproduct, we made various contributions to the analytic evaluation of reduced 
Feynman diagram integrals.  In doing so we advanced the theory of some particular 
special functions of mathematical physics and elaborated the theory of generalized 
harmonic number sums. 
 
We found often that much ‘ground work’ needs to be done—there is an absence of 
quantum algorithmic ‘infrastructure’.  Although quantum computing is a very active area, 
just which applications are most amenable to quantum approaches often remain elusive. 
Two example questions from the latter portion of our overall investigation include:  
Which scheduling and logistics problems have oracle functions that may be implemented 
efficiently in order to perform adaptive search?  Which type of limited logistics problem 
may yet have a polynomial-time quantum solution? 
 
Lastly we made specific contributions to quantum lattice gas algorithms.  We showed 
how the important Maxwell equations of electromagnetism could be solved with this 
class of algorithms.  We further generalized an algorithm for the diffusion equation so 
that the more complicated telegraph equation could be simulated with a QLGA.  The 
latter partial differential equation has multiple applications, including transport in 
disordered media, image enhancement, heat propagation, and elsewhere.  
 
As a result of this project, senior student Ben James Jones received the Ryan Sayers 
memorial award for research as a combined computer science and engineering physics 
major. 
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